Tag Archives: Hasso Plattner Institute

Systems Medicine of Heart Failure (SMART)

Executive Summary

e:Med Flyer 2016The cooperation project Systems Medicine of Heart Failure (SMART) focuses on researching risk factors of heart failures. The onset and course of heart failure (HF) is triggered by a complex regulatory network that includes stressors (pressure overload by individual anatomic hemodynamic settings), intrinsic (genes), environmental (regulating epigenetics), and modifying factors (such as hormones and the immune system). SMART aims to establish individualized strategies for the prevention and management of HF by early detection of the physiological, genomic, proteomic and hemodynamic mechanisms that lead from one common cause of ventricular dysfunction (pressure overload) to maladaptive remodeling and irreversible HF. To cope with the complexity of HF, SMART will interrelate models describing the interplay between genome, proteome and cell function, regulating hormones, tissue composition and hemodynamic whole organ function up to a whole body description of a patient and patient cohorts. The ultimate goal is to demonstrate proof-of-concept tools for predicting disease evolution and efficacy of treatment in a given patient. To achieve this task SMART will apply
– A modelling framework that couples multi-scale mechanistic models with in-depth genome/proteome, cell physiology and whole organ (biomechanical and fluid dynamic) models
– Subsequently, investigate methods validity and relevance for “quantitative prediction” of treatment outcome in a clinical proof-of-concept trial (demonstrator) of patients with aortic valve diseases.

 

Project Partners

Related Content

In the following, we assembled related content that might be of your particular interest.

Events

Publications

Research Publications

  • Slosarek, T., Kraus, M., Schapranow, M.-P., Boettinger, E.: Qualitative Comparison of Selected Indel Detection Methods for RNA-Seq Data. International Work-Conference on Bioinformatics and Biomedical Engineering. bll. 166-177. Springer (2019).
  • Kraus, M., Hesse, G., Slosarek, T., Danner, M., Kesar, A., Bhushan, A., Schapranow, M.-P.: DEAME-Differential Expression Analysis Made Easy. Heterogeneous Data Management, Polystores, and Analytics for Healthcare. bl. 162--174. Springer (2018).
  • Kraus, M., Schapranow, M.-P.: An In-Memory Database Platform for Systems Medicine. Proceedings of the International Conference on Bioinformatics and Computational Biology. bl. 93--100. The International Society for Computers and Their Applications (ISCA) (2017).
  • Kraus, M., Niedermeier, J., Jankrift, M., Tietboehl, S., Stachewicz, T., Folkerts, H., Uflacker, M., Neves, M.: Olelo: a web application for intuitive exploration of biomedical literature. Nucleic acids research. (2017).
  • Schapranow, M.-P., Kraus, M., Danner, M., Plattner, H.: IMDBfs: Bridging the Gap between In-Memory Database Technology and File-Based Tools for Life Sciences. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine. bl. 1133--1139. IEEE (2016).

Sponsors

Contact

Please feel free to get directly in touch with the experts. Use the following contact form, if you have any open questions you might to share with us.

First name / Last name

E-mail address (required)

Subject

Message (required)

2014 European Life Science Award Top 3 Most Innovative New Services

European Life Science Award 2014
AnalyzeGenomes was honored with the European Life Science Award for the Most Innovative Service. We are happy to be select out of the variety of nominations and labeled as one of the top 3 most innovative new services in the European Life Science community of the year 2014. We received the award in connection with the ELA in Barcelona, Spain on May 13, 2014.

HPI-Studenten liefern blitzschnell passgenaue Informationen zum Erbgut

“Die Analyse und Auswertung riesiger Mengen genetischer Daten sind jetzt in Echtzeit möglich. Das hat ein achtköpfiges Team aus Bachelorstudenten des Hasso-Plattner-Instituts (HPI) bewiesen. Die Software der HPI-Studenten beschleunigt die Untersuchung durch Einsatz der am Institut erforschten Hauptspeicherdatenbank-Technologie, welche die Echtzeit-Analyse von Genomdaten ermöglicht. Die Projektergebnisse helfen Forschern und Ärzten, erstmals auch genetische Veränderungen bei ihren Behandlungsentscheidungen zu berücksichtigen.”

Weiterlesen.

Hasso Plattner’s lightning fast database technology lends a hand to personalized medicine.

“An innovative database technology researched at the Hasso Plattner Institute (HPI) – originally designed for the lightning fast analysis of huge amounts of company data – is finding increasing use in other areas as well. The winner of several innovation awards, In-Memory technology promises, among other things, to advance the widespread use of personalized medicine significantly.”

Read more.

Datenberge blitzschnell auswerten HPI-Technologie soll in der Krebsmedizin helfen

“Ursprünglich war die Technologie am Potsdamer Hasso-Plattner-Institut (HPI) für Unternehmenssoftware entwickelt worden. Künftig soll die sogenannte In-Memory-Technologie auch dabei helfen, riesige Mengen medizinischer Daten in Echtzeit zu analysieren und auszuwerten. Komplizierte und teure Behandlungen, zum Beispiel bei Krebserkrankungen, könnten somit schneller und passender auf jeden Patienten individuell zugeschnitten werden, heißt es vom HPI. Am heutigen Mittwoch stellt das Plattner-Institut auf dem World Health Summit die neue Technologie zur blitzschnellen Genomanalyse vor, die besonders individualisierte Krebstherapien unterstütze und massiv beschleunige.”

Weiterlesen.

World Health Summit: Hasso Plattner Institute Presents Instantaneous Genome Analysis

“A new database technology from Hasso Plattner Institute (HPI) holds the promise of utilizing personalized medicine on a comprehensive scale. This technology is to be presented at the World Health Summit on October 24th in Berlin. Originally developed for corporate software and honored with the 2012 German Innovation prize, In-Memory Technology will also help in the future to analyze and evaluate huge amounts of medical data in real-time. Complicated and expensive treatments, such as those for cancer patients, could then be carried out faster and better tailored to fit each patient.”

Read more.